The development of the collagen fibre network in tissue-engineered cartilage constructs in vivo. Engineered cartilage reorganises fibre network.
نویسندگان
چکیده
For long term durability of tissue-engineered cartilage implanted in vivo, the development of the collagen fibre network orientation is essential as well as the distribution of collagen, since expanded chondrocytes are known to synthesise collagen type I. Typically, these properties differ strongly between native and tissue-engineered cartilage. Nonetheless, the clinical results of a pilot study with implanted tissue-engineered cartilage in pigs were surprisingly good. The purpose of this study was therefore to analyse if the structure and composition of the artificial cartilage tissue changes in the first 52 weeks after implantation. Thus, collagen network orientation and collagen type distribution in tissue-engineered cartilage-carrier-constructs implanted in the knee joints of Göttinger minipigs for 2, 26 or 52 weeks have been further investigated by processing digitised microscopy images of histological sections. The comparison to native cartilage demonstrated that fibre orientation over the cartilage depth has a clear tendency towards native cartilage with increasing time of implantation. After 2 weeks, the collagen fibres of the superficial zone were oriented parallel to the articular surface with little anisotropy present in the middle and deep zones. Overall, fibre orientation and collagen distribution within the implants were less homogenous than in native cartilage tissue. Despite a relatively low number of specimens, the consistent observation of a continuous approximation to native tissue is very promising and suggests that it may not be necessary to engineer the perfect tissue for implantation but rather to provide an intermediate solution to help the body to heal itself.
منابع مشابه
Interstitial Flow Produces a Superficial Zone-Like Layer in Tissue Engineered Cartilage
INTRODUCTION: Surgical repair of articular cartilage typically yields fibrocartilage that lacks the stratified ECM architecture of native cartilage and does not integrate with the surrounding hyaline cartilage. Because of these limitations, there has been considerable interest in cartilage tissue engineering and that led to the development of various bioreactor systems to grow functional engine...
متن کاملDesigning of Human Cartilage Tissue, by Differentiation of Adipose-Derived Stem Cells With BMP-6 in Alginate Scaffold
Purpose: In the present study the effect of BMP-6 was investigated on chondrogenesis of adiposederived stem cells. Materials and Methods: Mesenchymal stem cells derived from subcutaneous adipose tissue were cultured on alginate scaffold to induce chondrogenesis in experimental group, with chondrogenic medium having BMP-6 growth factor for 3 weeks. In control group medium without BMP-6 was appli...
متن کاملUltrastructure of myotendinous junctions in tendon-skeletal muscle constructs engineered in vitro.
During development, the interaction between tenocytes and myotubes leads to the formation of highly specialized muscle-tendon structural interfaces: myotendinous junctions (MTJs). Structural integrity of MTJs is critical for force transmission from contracting muscle through tendon to bone. We recently developed an in vitro model of three-dimensional (3-D) skeletal muscle-tendon constructs to a...
متن کاملEngineering cartilage or endochondral bone: a comparison of different naturally derived hydrogels.
Cartilaginous tissues engineered using mesenchymal stem cells (MSCs) have been shown to generate bone in vivo by executing an endochondral programme. This may hinder the use of MSCs for articular cartilage regeneration, but opens the possibility of using engineered cartilaginous tissues for large bone defect repair. Hydrogels may be an attractive tool in the scaling-up of such tissue engineered...
متن کاملPartial Resurfacing of the Distal Femoral Cartilage Defect with Stem Cell- Seeded Poly-Vinyl-Alcohol (PVA) Scaffold
Objective- To evaluate the biological compatibility of differentiated stem cells embedded in poly-vinyl-alcohol (PVA) scaffolds for repair of distal femoral cartilage defect. Design- Experimental in vivo study. Animals- Twelve adult male New Zealand white rabbits were used which were divided into two groups (I, II) six rabbits each. Procedures- Mesenchymal stem cells were isolated from h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European cells & materials
دوره 23 شماره
صفحات -
تاریخ انتشار 2012